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VARIANCE REDUCTION BY IMPORTANCE SAMPLING AND THE METHOD OF
SPLITTING IN MONTE CARLO CALCULATIONS
by Burt M. Rosenbaum

Lewis Research Center

SUMMARY

The two techniques of variance reduction that are considered are (1) importance
sampling and (2) splitting and Russian roulette. Based on the value of the variance, op-
timum biasing sampling procedures are investigated and it is determined when adjoint
biasing yields the minimum variance. It is shown that the method of Russian roulette
may lead to an increase, rather than a decrease, in variance. A short example illus-
trates the methods used.

INTRODUC TION

Before the advent of the computer, when a problem involved a large number of
members or participants (e.g., when dealing with, say, a collection of molecules),
analyses usually could not be carried out for the general case. Because of the complex-
ities, analytical solutions could only be found in limiting situations or where simplifying
assumptions could be made. In the regions where such assumptions could not be made,
realistic theoretical analyses could not be accomplished and so-called educated guesses
were resorted to.

The computer enables an investigator to compare the theoretical behavior of his
conceptual model with experimental data in the complicated inter mediate region where
standard analyses break down. When the Monte Carlo method is used, the possibilities
of occurrence are encoded into the computer program and the behavior of a large number
of sample particles is simulated by computer decisions as the sample particles are fol-
lowed through the system. On the basis of the data thus generated average behavior
patterns may be calculated. According to the information needed, the computer may be
instructed to spew out local densities, total kinetic energy densities, heat and mass
transfer rates, pressures, probabilities of penetration through a barrier, fission rates,
chemical reaction rates, and so forth,



In an attempt to decrease the computation time necessary for answers as well as to
enable one to handle problems which originally would overload the computer capacity,
techniques were evolved which established more efficient simulation processes than di-
rect simulation; that is, better accuracy could be obtained for a given sample size. The
systemization of such error-reducing procedures was due in large measure, to the work
of H. Kahn (refs. 1 to 4).

This report concerns itself with two of these techniques: (1) importance sampling
and (2) splitting and Russian roulette. The theory has been extensively treated in the lit-
erature and applications of the two techniques, used separately or in combination,
abound in computer programs (refs. 5 to 13). In this report, both techniques are formu-
lated in a unique manner and equations for the variance resulting from their use are de-
rived. These equations are generalized to apply to any number of sets of random varia-
bles and optimum procedures are developed. In addition, a brief example is posed and
analyzed to illustrate the method. It is hoped that the formulation of the problem as pre-
sented herein serves to clarify the basic concepts involved.

IMPORTANCE SAMPLING
The following problem is considered. Suppose we are given a function g dependent

on three or more sets of random variables X = Xis Koy o X where xi represents all
variables in the ith set of random variables and we wish to determine the mean or ex-

pectation value of g:

Blgl = /.. .fg(i’)f(i’)d}’(’ (1)

In equation (1), the multivariate probability density function is denoted by f(X) = f(xl,

Xgy. o - ,xn). When the relation

f(X) = f(xl, xo)f(xq, . . -, Xn/xl‘ Xo) (2)
is used where the symbol f(x3, .. .Xn/Xl, xz) is the conditional probability density
function of the random variables Xgy - . X given that Xy, Xg have taken on fixed val-

ues, equation (1) can be written

Elg] =ff f(xl,xz)dx1 dx2 f ) ./g(;{)f(x3,. . "Xn/xl’XZ)dXB' Cadxy

:/f Elg/x, %olf(xy, xg)dx, dx, (3)



It can be seen, therefore, that E[g/xl,xz], the expectation value of g given that X4
and X9 have been fixed, satisfies

/xl,x f fg(x)f(x3,. . .,xn/xl,xz)dxs. e (4)

The variance of g for fixed Xy and Xy is given by
2 - 2
crg/xl,x2 = f . f <g(x) - E[g/xl,x2]) fxgq,. - .,xn/xl,xz)dx3. codr (5)

If we pick from a population distributed in accordance with the probability density
function f(x 2) then a weight function w(x x2) can be 1ncorporated into the density
function Wthh may act to decrease the value of the variance ¢ /x1 X9 while keeping
the value of E[g]| invariant. The new probability density function f(xl,xz)/w(xl, x2)

satisfies the relation
f(xl,xz)
- Sl dx1 dx2 =1 (6)
W(Xl’x2)

and equation (1) becomes

E[g] - _ f(xl,xz,. .. ,xn)
E[g] = L W(Xl’ xz)g(x) Wi, x -)A — dx1 dxz. . .dxn (7)
122 '

The method just described whereby a weight function is employed is called ""importance
sampling'’ and, by equation (7), we see that the expectation value of g(X) when sampling
from a population with probability density function f(X) is equal to the expectation value
of W(Xl’ xz)g(f) when sampling from a population described by the density function
f()’(’)/w(xl, xz).

The variance of w(xl, xz)g(i’) associated with the probability density function
f()?)/w(xl,xz) is given by



e

2 - _ - 2 f(X)
OW(XI,Xz)g(X) _i(g)iA = / . /(W(xl,xz)g(x) - E[g]) ‘—”—(;—(—]t:)—;z) Xm dXz . .an

W(Xl’ xz)

ff w(xl,xz)E[gz/xl,x?‘:lf(xl,xz)dx1 dx2 - Ez[g]

It

E[w(xl,xz)E[gz/xl,xzﬂ - E%g (8)

where

I

2 2, -
E[g /XI’XZJ f . ./g (f(xg,%g, - - .,xn/xl,xz)dx3. odxy

2 2
= crg/xl,x2 +E [g/xl,xz] (9)

The particular weight function \;I(xl,xz) that minimizes the variance of W(Xl, x2)g()’{°)
subject to the constraint given by equation (6) satisfies the equation

el
w(xl,xz) =_Lt :
Elg®/xy, o]

(10)

and the minimum value of the variance is given by

A
2 -~ 2 ‘/ 2 2
Wixy, xg)e®) | gy . ‘: E[g /Xl’xzﬂ" Eg] (11)

w(xl,xz)

This formulation, as mentioned before, is the method of importance sampling in the two
variable sets Xy and Xo.
It may be stated here that if N measurements of w(xl,xz)g(i’) were made, then the
variance of the average is merely equal to the value given by equation (8) divided by N.
The concept of stages is now introduced and it will be employed throughout this re-
port. We assume that in the first stage we sample from the xl—distribution and in the
second stage from the xz—distribution. We write

4



f(xy,%y) = f(xl)f(xz/xl) (12)
w(xl,xz) = u(xl)u(xl,xz) (13)

where u(xl) and u(xl,xz) satisfy

f
filldxl =1 (14a)
u(xl)
f
S G U (14b)
u(xl,xz)

It should be noted that a knowledge of the function w(x 1,x?‘) uniquely determines the
functions u(xl) and u(xl,xz). Substitution of equation (13) into equation (14b) results in
the relation

f(xz/xl)

dx, (15)
W(X1’X2)

u(x 1) =

so that the function u(xl) and, hence, the function u(xl,xz) may be directly solved for
once w(xl, x2) is known.

Picking from a population with density function f(xl, x2)/w(x1, x2) is equivalent to
first choosing Xy from a population with density function f(x 1)/u(xl) and then choosing
Xy from a population with density function f(xz/x 1)/u(xl,xz) where the value of X, for
the second population has been set at the value chosen from the first population. Equa-
tion (8) can now be written in the more revealing form, namely,



2 - _ 2, .2 2 f(x,,x,)
Ui ge® ey~ S ) g
u(x 1)u(x1, xz) :

f(x,,x,)
2_ T2
ﬂé(x Julxy,%9)E[g/x,,%5] - u(x;)E[g/x I) e xé) dx, dx,

f(xl)

u(x 1)

dx (8a)

+ <u(x1)E[g/X1] - E[g])2 1

In equation (8a), the variance has been broken down into components where each of the
integrals on the right side can be interpreted in the following way: (1) the first integral
is due to the variation in g when X4 and Xg are both fixed and the other variables are
allowed to vary; (2) the second is due to the variation in E[g/xl,xz] when Xy alone has
been fixed and X, is allowed to vary; and (3) the third integral is due to the variation in
E[g/xl] when Xy is allowed to vary. Note that it would be an easy task to generalize
equation (8a) to any number of sets of pertinent variables.

FORMULATION OF THE METHOD OF IMPORTANCE SAMPLING

FOR DISCRETE VARIABLES

For the sake of mathematical simplicity, assume that each of the sets of random
variables Xy;+ - .,X, are discrete and let us set up the foregoing problem by using a
notation in keeping with this assumption. The results obtained can readily be modified to
apply to the case when the variables are continuous, and the simpler discrete model will
be used to establish the relations that arise when considering the method of splitting.

First the notation is defined. Let the possible value sets of Xy be put into one-to-
one correspondence with the index i=1,2,3,. . .; let the possible value sets of Xg be
put into one-to-one correspondence with the index j=1,2,3,. . ., etc. Whether the total
number of possible value sets for any variable is finite or infinite does not change the
problem. Set p; equal to the probability that Xy takes on itsth ith value set and set
p.. equal to the conditional probability that Xg takes on its j~ value set given that X4

1) .th
has its i value set. We have




Ele] = Z PiPiiPijk - - Bijk. . . :Z p;E;le] (1%)

i, i, k,. 1
Ei[glj Z PiiPijkPijkl: - - Bijkl. . . :Z p;;Eijle] (3"

ik, 1,. .. ]
E;ile] = Z PijkPijk1® - - 8ijkl. . . (47)

K1, . .
2 2 '
%gi; 2 PijkPijkl. . .<gijk1. cL T Eij[g]> )
K 1,. ..

(Primed and unprimed equations of the same number are analogous. )
The scheme by which the average of g is obtained is illustrated in sketch (a) where

Pi1 "

s 911

! U1

—

B P2 "

N up 912

Pa1 "1
2
u 21

EZ ny 21

1] P n

2 \ P2 "2

uz2 922

(a}

the number of possible . and Xg (for each Xy value set) value sets are shown as two
in the sketch. A sample size N is first pulled from the xl—population where the proba-
bility of getting the ith value set of Xy is pi/ui' The number in the sample possessing
the ith value set of Xy is designated as n, and the expectation value of n, is
N(pi/ui). Then this sample is further subdivided by picking from that xz-population
corresponding to the value set of Xy where the probability of getting the jth value set
of x, given that the ith Value set of x4 has been chosen is pi'/ui" (The u, and uj
are weight functions that play the same role as u(x 1) and u(xl,xz) did in the case where
the random variables were considered as continuous.) The number of members in the
sample possessing the ith value set of Xy and the jth value set of Xq is denoted as

ni].. We note that



Z& = (14a'")
Yy

Ty (14b")

Let (gi].) o be the ath measurement of g where Xy has been fixed at its ith
value and Xy atits jth value regardless of the values of the other sets of variables.

There are nij such measurements. Consider the random variable

J
ZZ 1]01
z =L)e=l (16)
N

Equation (16) can be written

where
T
wu,, 1
_ itij
Zii = 2 B
a=1
r (17)
uiuij —
= N nlj(gij) J

Taking the expectation value of Zij gives

E(Z.] - LU g[n (g )| = L4 E|n Ef (g )/n.
1j N 1371 N ijo ey g



where E[(gij)/nij} is the expectation of the average measurement of gi]. when the num-

ber of measurements is nij' Because this expectation value is independent of the num-
ber of measurements, the eguation becomes

3% Pj Pij
E[Zij] = Eij[g]N —_ == pipijEij[gJ (18)
N u. 4.
i Tij
so that
B[] = 3 B[] = ), pypyyEyle] = Ble] (19)
1,1 1]

Hence Z is an unbiased estimator of E[g].
We wish to find the variance 0% of Z. The following relation holds:

of - E[2%) - EXz] = ), E[Z%p] - Ble)
i’j’i"j’
- Y E[Z2]+ Y ElZyzg)c D, ElZZ.p] - Bl (20)
i,] i3, i,j, i
G#4") (i)

Considering the terms of the first summation on the right side of equation (20) gives

2 uiz “?j 232 _YYNinl 2ele 02 “12 “izj 2 Uéij 2
E[Zi].] = e E[nij(gll) ] = ~ 2 E nijEl:(gij) /nIJ = - JE n; = + Ell[g]
N N N ij

u2u2 22
- idjs2 g 4 11 g2 [ 2

The relation



17
u.
i Cij

E[n..] =

ij

£ |0
b

has already been employed in obtaining equation (18). To find an expression of E [n?j},

we employ the fact that, for a specified value of n,, the quantity n,. is distributed as a
binomial variable with probability pij /uij of ""success'' where the number of trials is
equal to n,. Hence

2
Pss p p
=ﬂE[n?‘]+ﬂ 1- -1 )En,]
2 1 U, u. . 1
Uy ] 1]
2 2
u2 u2 u. u, .
ij i 1 ]
2 2
2P P e P P P P
u2 u2 Y5 Y Y Y
i Y ] }
Thus, the terms of the first summation are given by
21_ 222 1 ;2 L1 PPy Pj Pjj\ 2 2 2
| =pipi-E.. u.u, - = A 1-—=—=juu. E 21
E[ZU} PP ll[g] +N PiPii glJ +N 0w U, u.. it ll[g] 21
ij iij

Considering the terms of the second summation gives, for j#',

u, u..u..,
Z. =L+ BN E [gE.  [g]E[n.n..
E[lezl]'} N2 El][g] 1]'[g] [n1]n1]']

where we have used the fact that (gi].) and (gij') involve measurements made on two

10



different groups of the sample and, hence, are independent variables.

Efn; yp] = E [

Efny g0 /ny1]

Now with n,,
and the probability per trial of taking on the j'th
(1- (py /u )] The denominator 1 -

fying the probablhty Ps; /u because, w1th n,.

give rise to a member havmg the j value set of Xo. Thus
Py
- o
R,
Efng./ny] = —
ij D.
1--4
Uy
and
i
ij’ 2
E[nijni]] o E[nini]. 1]}
1-_4
ij
Continuing,
pi]'
., P p2 p
E[n ] g di2 [,z TH
ij7ij p.. |u. 1 9 1+,
1 -4 1] Y55 1
u..

fixed, n,., is a binomial variable, where the number of trials is (n, - n,.)
value set of x, is (p '/ul D/

(p /u ) is needed as a normahzatlon factor modi-
fixed, none of the (n - n ) trials can

We have

ij

11



Hence, for j#j’,

_ 2 1
E[zijzij.] = pipijpij.Eﬂ[g]Eij,[g]< - ﬁ) (22)

Considering the terms of the third summation of equation (20), we have, for i#i’,

W W WUy sy

1"1]'1
B[Z4;Z;050) = 2= 1) By (8180 (8] Blngn. 0]
2
N
where
Efny;nype] = B[ ng Bl R |
p" p""
( (N -n,.) — L
N ow, u,s,
- FE ngj —— ro1)
1 Pi Py
u. U..
B itiy )
Pir Pyryr
S gl 2] P P By 2<1 _l>
Pi Pyj Yir Yy Yy Yy N
1.1:.l uiJ
Hence, for i#’',
_ 1

Substituting equations (21) to (23) into equation (20) and using the relations

2 2 2
E..[g¢7] = E 9
i | = o, Eifle] th
and
wij = ULiu.1j (13")

12



yield

2_2: 2 P; DPyj Pj Pjj\ 2 2.2
No = D; puulul]ogl] + SR el uiuijEij[g]
— iij i ij

L] —
L]

Z P; p1] 1] 1][g]E1]'[g] - E p; pl'plj 1] El][g]Elvlv[g]

i,3,] i,j, 1,7
(G#3") (iA")

2
E P3Py 959450 gn z PP; %1% 1][g] 2 p;P;;E ;8]
i, L3 b

2 .
= " wyiE;le’Ipgey; - B el (8")
i,j
Equation (8'), which is analogous to equation (8), can be written in a form analogous to

equation (8a) as

PPy
No2 = wig? Ty <w..E [g] - uE[g]>2 L1y
Z 1378 w. 1j1] W
ij 1)
i,] i, ]
2 Pi \
) (Ele] - Bl 2 2 (82")
/ u.
1
i

The analogous equations to equations (10), (11), and (15) are

1/2
E[ g ]) :'
= (10")

W

(1l
’ \/ Ei]-[gzl

13



(11)

- i L IR (15")

MODIFICATION TO INCLUDE THE METHOD OF SPLITTING

We now modify the scheme by which the average of g is obtained in accordance
with sketch (b).

PnMi 1 Vi
M oMo V) / YL
up s Plo M2 1 V12
N up sy
Pata 1 Va
Pp Ny g 12_» Uy So1 921
K %2 Poip 1 Ve

52

922

Uz
(b)

Again the possible X, and Xq (for each Xy value set) value sets are shown in sketch (b)
as two in number.

The first step in the sampling procedure remains the same; a sample of size N is
first picked from the xl-population where the probability of getting the ith value set of

Xy is pi/ui. The number in the sample possessing the i~ value set of Xy is desig-~

nated as ny

This number n, is then multiplied by the splitting factor l/si to yield the number

and, for a sample of size N, the expectation value of n, equals (pi/ui)N.

Vi—

that no longer does the sample necessarily consist of N members because Z Vi #N

1

in general.) The sample is further subdivided on the basis of the variable Xq and nij
resresents the number of members in the sample with the ith value set of X4 and the
.th

jth value set of X9 where the probability that a member possessing the i~ value set

(l/si)ni that now possesses the i~ value set of Xq. (It may be noted at this point

14



of Xy also has the jth value set of x, is p:./u... Aga}ln, the splitting factor l/sij is
introduced and the number of members possessing the i value set of Xy and the
jth value set of Xg is changed to v.. = n, /s Finally, Vi measurements of 8
are made where the ot measureme]nt is denoted as (gi')a ! :

It is observed that two steps are included in each stage: (1) importance sampling
where the weight factor 1/ui or l/ui. alters the selection probabilities and (2) splitting
where the splitting factor l/si or l/sij alters the numbers selected. Such a stage will
be designated as a ''composite'’ stage. In general, whenever a splitting step is present,
the total number of members in the sample changes.

The random variable that is of interest now is

Vi
2 1 5 1181](g1])a
3 - i,j a=1 (24)
N

Proceeding in the same way as before, we write

Vi B
3 - 3 3 ) uiSiuij?H &) - lslul]sl]ulj(g ) )
1j> d1ij N ija ~ N
i7j azl
%% 431514354
E[gij] = _l]_ iR Z (gll ol = NJ ] E; [g]E[V ] plpIJEIJ[g] (26)

E[g] = Z E[fl]] = Z pipijEij[g] = E(g] (27)
1]

i,j

Hence, 3 is an unbiased estimator of E[g|. Continuing, we have

15



0% = H % - B 7]

) Z ; [3123} +Z ElgiZuyl Z E[fijgivjv] - E°[g] (28)

1] j ij,i,7

1s
A’ (i#1')

>

1
(i

~—

As before, each of the summation terms of the right side of equation (28) will be
considered in turn. For the first summation terms we get

0262262 12:242¢ 122,22
2 i 51 %15°1 2——2 i%i %% 2 151 %5515 .2 2}
E == E . = = El|v.. E s
[5 1]] ) [Vu(gu’ ) Ggi] [vy;] + X ij[8IE vy
N
where
p; p..
E[vi.] =N+ 1
] u.sS. u..s..
i1 7171
and

i
p2
_1_ E _i_j 1/2 + E];] 1 pl] V.
S2 u2 u, s uy !
ij | "j ] )
p2 pZ p p p p
~_21J'2.1_2N2_1+N-1 YRt I I ¥ PR Ul A
2 u u 2 u u.s
U555 Sy uy i i uijsij ij i"i

This yields
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27 22 2 1 2
E [5 1]} = pipy;Eyjlel - PP11%1 %5511 %

EZ(¢g]

ij - -

For the second summation j#' and

22
u:s: u,.u..

1S..8. .4
e s e S KA S g T
E[gijgij'] - N2 — h’ij[g]Eijv[g]E[VijVijv]

where

E[v — E[n,.n.. ] = -
AR VAL

i

iVt -

..S.. e
%1351 ij 1.

i ij

ij ij u; . ij ij
uij'sijsij' 1 - 2 ij
ij

| (T o T
WP g2 ]
Y5415 51554;"



and we use the method of Lagrangian multipliers. Equations (34a) and (34c) merely re-
quire that the altered probability distributions be true probability distributions whereas
equations (34b) and (34d) require that, on the average, the number of members in the
sample after the splitting is changed by the factor my for the xl—variable stage and
m, for the xz-variable stage. (From this point of view, the factors m, and m, can
be regarded as ""magnification'' factors.)

Multiplying each of the equations of constraints by so-called Lagrangian multipliers
and adding these terms to the expression for Noﬁ defines the quantity

L:Nor2 +)\2 o +)\2 1om + 7\.2p. L
1 II 1 i
u, w, u. .
— 1 ~— 1 i — 1]

1

i i j
2 PiPy;
* M E — - mymy
\
1]
i,j
2 .2 ,2,. 2 . . .
where ?\I, AII’ Ai(1—1, 2,. ..), }\III denote the Lagrangian multipliers. This expres-

sion is minimized with respect to each of the four variables U, Wi, Wij’ and wij by
setting the appropriate partial derivatives to zero:

S
oL 2 2 P
— :piEi[g]—RI—i=0
AW . . A A 1’12
i , W, U,., W i
VRO SRS TS |
R _ 2 ~ 2 2 2 Py _
—8—\;/— - pi piquJEIJ[g] - pl l[g] - >‘H —’\—2 =0
i S W,
|u1, Wi, uij’wl] ] i r (35)
aLL 3 2 2 plpl]
- piP; Wi Eyjle] - A =57 =0
ijl»~ » ~ =2 ul
;. Wy, uij’W1] ij
oL 2 2 PiPij
‘ = PiPii%. .~ M —J -
PwiJ e a A A ij \;}2
Y Wy ul]’ Wij 1 J
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LA S 1 i)

E.lg
1Bl ]] (362)
-~ E g
5

E..|lg
1. ijle] (36b)
a.. Eylel
ij

m. . m;,o

1M2%g..
1. 8 (36¢)

- E
Wi [UgijJ

¥ u,, u,., and W take on the values given by equations (36), then it turns out that

i’ iy’
ch is independent of the form of w, SO that the simplest expression for 1/si in ac-

cordance with the constraint given by equation (34b) is

1 _
POl
Si
which yields
m,E.[g
1. 1_1U (36d)
w E[g]

It can be seen from equations (36a) and (36b) that the optimum values ﬁ.l and Gij of
the weight factors correspond to ''adjoint biasing'' (refs. 1, 10, and 11) wherein the
biasing as given by the reciprocal of the u's is proportional to the expected contribution
of the member to the answer E[g].

The minimum value of No} is found by substituting equations (36) into equation
(32a)

S E2 Og. :,
Ncr; - 1 (37)

21



The previous equations can easily be converted to the case wherein x

and x2 are

continuous variables (or sets of continuous variables). The following relations hold

PIRCHECAECHEALCRENICCESN

-

where the summation is taken over all measurements.

E[ 7] :// E[g/x, %, )f(x{, xg)dx, dx, = E[g]

NO'% ://W(Xl’x2)<0§/xl’X2>f(xl’xz)dx1 dX2

+ //w(xl)u(xl,x2)E2[g/x1,x2]f(x1,x2)dx1 dx,,

- /w(x 1)Ez[g/xl]f(xl)dx1

+/u(x1)E2[g/x1lf(x1)dX1 - Ez[g]

w(x 1) = u(x 1)s(x 1)

w(xl,xz) = u(xl)s(xl)u(xl,xz)s(xl,x2) = w(xl)u(xl,xz)s(xl,xz)

f(xl)

_— 17 1
u(xl)

f(xl) )
iy 1

22

(24")

(277)

(32a")

(33a")

(33b")

(34a")

(34b")



1 _ E[g/xl’xz]
E[g/XI]

u(xl, x2)

1 mymplog/yXg)

w;z(xl,xz) E[Ug/xl’XZ]

w(x,) E[g]
5 E2 [0 /%Xq{,%o]
No - 1 2

CARRYING OUT OF THE SPLITTING PROCESS

(34c")

(34d")

(36a')

(36b")

(36c")

(36d")

(37

The question now is how best to carry out the process of splitting. According to

X n
sketch (b), in the splitting part of the {x;} stage, the number {n

1/

} of members is mul-

S. v,
tiplied by the factor {I/ST} to yield the number {Vl} . This is a simplified concept of
1] 1)
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1/s.
what can be done because {l/sl} is not, in general, an integer. Since, in a literal
ij

sense, we cannot work with fractional members, a method must be devised to give the
necessary flexibility.

v,
In some cases, the number {Vl} of members corresponding to a given value of
ij

11. .
{ nl} is left to chance where the probability is so chosen that the required relations
ij

E[v;/n] = =y (382)
S.
i
_ 1
E[Vi]/ni].] " ny; (38Db)
1]
hold. For example, suppose we write
1
— = Ii + Ty (39a)
5
R S (39D)
s ij ij

I. r, n,
where {Il} is a non-negative integer and 0 =< {r] } < 1. Then, if each of the {nl }
ij ij ij

1. 1-r. I.+1 r.
members gives rise to {11} members {l_rl} of the time and {11 +1} members {rl }
ij ij ij ij

I.+r.

n,
of the time, on the average, each of the {nl} members generates {Il ﬂf } members,
ij ij ij

thereby satisfying equations (39). This process is an example of the '"Russian roulette"’
method wherein particles are created or annihilated by chance. If this process is used
as described to obtain the sampling as a function of the variables X4 and Xo, then the
expression for the variance of 3 as given by equation (32) no longer holds. The reason

V.
is that additional uncertainty has been introduced by the fact that the variance of {Vl}
1]
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n,
corresponding to a given value of {nl } is no longer zero. For this technique, the num-
ij

n, 1.+1
ber of times .7 that the {nl } members give rise to {Il +1} members is a binomial
ij ij

r. n,
variable where {rl } is the probability of ''success'' and {

i } is the number of trials.
ij

ij
Because

it is easy to show that

E|v2/n —n12+ r.(1 - r.) (40a)
i) T 5 TN i
5§
and
E V2 /n..| = nizj r..(1-r..) (40Db)
s V] B VR N
SU

With the aid of these relations, the expression for the variance may be obtained in
exactly the same way as carried through in the preceding section. The random variable
J s given by equation (24) and each term of equation (28) must be reevaluated for the
situation under consideration. A point that might cause some difficulty is the evaluation

of E[v,, Vi .] for j#'. This is accomplished as follows:

1J 1] /f//:/f 1] 1] f(n Vi, nij, nijn Vij, VIJv)dni dVl dni] dnl_]' dViJ dvij'

where f(ni, v ,) is the appropriate multivariant probability density func-

i My Mgt Vigr Vige
tion. This equation can be written as
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E[Vi].vij,] = /]U f(ni, Vi Dy ni].,)dni dv, dnij dnij'

X // Vi Vij'f(Vij’ Vij'/ni’ Vi Dy nij')dyij dvij'

But because the random variables Vij and Vij, only depend on ni]. and nij" respec-

tively, we get
E[Vijl/i]-,] = //f/f(ni, Vi’nij’nij')dni dv; dny; dngs,
fvijf(vij/nij)dvij /Vij'f(yij'/nij')dvij'
E [(E[Vij/ni].]> . <E[Vi].,/ni].,]>}

P.. D.:,
-1 E[nijnij'] SR e ek E|:v12 - VJ

X

1l

For the splitting technique involving Russian roulette as described, the increase

A <E [3 12]J> in E [3 ;ﬂ over that value given by equation (29) is found to be

1 2
+ E pipijwijsijrij(l - rij)Eij[g]

The increase A <E [5”.3“,]) in E [gijgij'] over that value given by equation (30) is

found to be
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1
A<E[5ij 3“.,]) = . pipijpij'wisiri(l - ri)Eij[g]Eij'[g]

Equation (31) is found to remain unchanged. The increases result in an increase

A(Ncé) in No§ over that value given by equation (32):
2 9 9
A(Noa?> - Z pyw,s;r;(1 - ) Effg] + E PiP;iWi5iT1i(1 - Ty Eijle] (41)
i i,j

To get an approximation of the magnitude of this increase, we make the tentative
assumption that both r, and rij are uniformly distributed over the interval (0, 1) so
that

—

1
E[r(1 - r)| m/ r(l - r)dr = = (42)
0 6

and equation (41) becomes

2 1 2 1 2
A<Nc‘r3> wg E p;w;s;Eilg] +g E pipijwijsijEij[g] (43)

i i,j
In general, the increase in the variance of ()9 as given by this equation is not insig-
nificant and, in some instances, could practically nullify the reduction obtained by split-
ting. Hence, the method of Russian roulette should be used with caution.

A technigue v hereby equations (38) are satisfied without the introduction of additional

n.
uncertainty in the final result is that in which, for each of the original {nl } members,
ij
I +1 ry
Il +1[ members are generated, the last member having a weight {r that of the first
ij ij
Ii r, Ii+1
I members. Hence, in this method, provided r # 0, we actually follow L.+1
ij ij ij
members but weight the last one differently. Here our relevant random variable has
changed from that given by equation (24) to

Y = Z Y.. (44)
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where

l131 12J 132
_ Vi E § -S_
i' = ? (g1] (gll g +T 1] (g]_])a
a21—1
V. .
D)
trr E €0, (45)
¥99=1

and we have subdivided the paths as shown in sketch (c). Hence

T

Vigip ™ iy

{c)

E[ } N<pi>1 <pij>1

V. - = — VL. [ Il..

i.d i ij (46a)
11 Yy uij
0 p. D.:

E|v; ; }::N<fl><*ﬂ>ln (46b)
| 2'1 uy uij
B p. P; -

E|v; } = N<_1>1i <_ll> (46¢)
[ "1°2 u, uij
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E [Vizjz] = N<?><§H> (464)
i ij

Note that
E[Yij] = ‘;13 E; [g]N liu [IiIij + riIij + T, ]I + rlr”] Wl]El][g] ufl—%—: pipijEij[g]
iij 117171
and thus
E[Y] = E[g]
as desired.

This choice of random variable introduces no new uncertainties into the calcula-
tions and the fact that we are dealing with more members than previously (because

L+1 L+, 1/s
I ]+1 I. +r1] l/s ) results in a reduction in the variance. In appendix A,

it is shown that

a2 o2
NoY = No(? - plpn 13 8, 1- [1 - Siri(l - ri):( [1 - surl](l 13)}

pi' 2
_2 pjW;8;ri(1 - 1y u—l <uijEi].[g] - Ei[g]> (47)

— 1]
1,]

where Nz% is given by equations (32). The disadvantage connected with this technique
is that only the fractions r, and Iy of the measurements made on the last members of
each stage are being used. In this sense, the method is not as efficient as it might be.

A more simple way of proceeding is to insist that 1/si and l/sij are both integral
for every i and j. In other words, even though the optimum values of these guantities
are nonintegral, we always take, as the value to use for 1/s; or I/Si" the smallest
integer larger than or equal to the optimum value. In this way, we avoid both of the dis-
advantages associated with the two methods previously described - namely, (1) no new
uncertainties arise and (2) each of the (gij) o Mmeasurements corresponding to particular
values of i and j carries the same weight. However, if this method is used, then, as
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also occurs in the previous method, the numoer of particles in a splitting step never de-
creases.

Kahn (ref. 3) suggests two separate treatments in a splitting step and which of the
two treatments an individual member receives depends on its values of the measured
x-variables. Sample members in a splitting step are classed as belonging to either a
type I or II region. In type I regions, the optimum value of 1/si or l/sij is less than
or equal to, say, 0.5 so it is desired to decrease the number sampled in these regions;
in type II regions, the optimum value of l/si or l/sij is larger than 0. 5 so the num-
ber sampled in these regions should not decrease. Kahn uses Russian roulette on type I

l/s =r,

region members whereby a member having an optimum value of {1 /s x{ } less than
ij

: 1-r,

1} of going on and the chance of {1 rl} of being killed,
ij 1

thus satisfying equations (38). For type II region members, '"'integral'' splitting is

r
0. 5 is given the chance of {r

S.

51} taken on is the reciprocal of the integer closest to the optimum
1]

used where the {
1/s,

ber can be classified into one of the two regions I and II, there are four classes of mem-

bers, that is, I-I, I-II, O-I, and II-II. Equations (32) and (41) apply in this case to

yield the proper expression for the variance.

1/s;
value of { } . After going through two stages of splitting in each of which a mem-

EXTENSION OF ANALYSIS TO ANY NUMBER OF STAGES

Equation (32b) gives the expression for variance where two stages have been em-
ployed, each stage being a composite stage consisting of an importance sampling step
followed by a splitting step. This equation may be easily generalized to apply to any
number of stages. For example, if there were three composite stages, then the appro-

priate relation becomes

2 E 2 z _Pijk < >
No“ = Lo W — (W,
o ﬂukwl]kggijk * Wyt ij%ijk 1]k[g Wi 1] le]

Lk Lk
P 2 2 2
M N <WiuijEij[g] - WiEi[g]> + —1«<uiE1[ ]- E[g]> (48a)
E w.u,. u;
i1ij i
i,j i
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where

N
ik ~ Yij%ijkSijk
Yii = Wi%35i; > (48Db)
Wl = lliSi J

and where the symbol 2 has been introduced to denote the unconditional probabilities -
namely,

\
Pi=p;= probability that x; takes on its ith value set
Pi ij = P;Py; i = probability that X takes on its ith value set
and X9 its jth value set, simultaneously &
(48c)

Pijk :F'ijpijk = pipijpijk = probability that x; takes on its

th th

ith value set, Xg its j value set, and Xg its k

value set, simultaneously

-/

In general, for any given number x of successive composite stages, the equation
for variance can be written

2? "iK
> > ?1112. iy
. u. . .
gy iyl iy
- .1912’ . "
X (w u. . E
(it - 1 g LBy o l8)
- s . E, g\ (49a)
g - g Tiglge o ip g

31



or

i, i2" 1,
K

+ Pi.i i Wi i Y4 1E121 [g]

Z: S\ 12 p 172 p-1 '1'2 p 12 L

p—l 11,12,- . -,lp

-2 . . w. ; E?i i (2] (49Db)
iylge iy g igige e i g Tigdpe o eip g

where p, is the probability that x; takes on its i}’ value set, p. . is the probability
i 1 1 iiy

that both x; takes on its itlh value set, and X its i%h value set, etc.

Again, as noted just after equations (33), these expressions for the variance also
hold for the cases where the stages are pure importance sampling stages (s=1) or pure
splitting stages (u=1). (We shall designate a composite stage by the symbol '"¥'', a pure
importance stage by "'I'', and a pure splitting stage by ''S'".) Also, as demonstrated
previously, these expressions may be readily modified to apply to continuous variables.
Finally, these expressions must be adjusted in accordance with the relations of the pre-
ceding section if applicable.

OPTIMIZATION OF THE WEIGHT FACTORS FOR NON-NEGATIVE ¢

If, for the moment, we ignore how the actual splitting process at any given stage is
to be effected, expressions for optimum weight factors may be worked out. For example,
in the case of two pure importance stages (I-I), the weight factors u and uij satisfy
equations (14a') and (14b'), respectively, and the optimum choice of these weight factors
is given by equations (10') and (15') where equation (13') applies. For the case of two
composite stages, ¥-¥ where g is non-negative, the weight factors satisfy the condi-
tions of equations (34) and their optimum choice is governed by equations (36).

For the general situation, it should first be noted that the number of stages in the
sampling procedure does not necessarily change the minimum variance attainable. Asan
example, let us again restrict ourselves to non-negative g and consider the three stage
sampling I-S-¥, that is, where the first stage is a pure importance stage, the second
pure splitting, and the last a composite stage. In this case, si=1 and uijzl so that
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Wik = %i51j%ijkSijk

-/

and equation (48a) can be written

2 E 2 _Z- 2
No™ = P 1jk% gy P 1k ij% i Bijkl8]

i,j’k i"j’k

ZPIJ ! Zpll u; Fy5le - E%g

The constraints to be satisfied by the weight factors are

—

Pijk _ 4
Uik
k
P__]'_]_IE_: m m3
: \Jwijk
i, i,k

Using the method of Langrangian multipliers to deter mine the minimum of Noz
ject to the constraints of equations (52), we find that the reciprocals of the optimum
weight factors satisfy

(50)

(51)

(52a)

(52b)

(52c)

(524)

sub-
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- (53a)

E;..l8]
1 . 111‘; : (53b)
- E..|g
Yijk Y
MyMqg0
273" g..
217 " Rijk (53c)
W1]k El:oguk}
where e? is defined by the equation
? = g [E2[6)]- ) pyElle] (54)
i i 7ij ' ij71j
J
It turns out that the minimum value of No2 is independent of the form of wij and is
equal to
N Ez ,:Og.. :|
No? - Lk, Ez[ei] - Ez[g] (55)

myMg
where the sum of the last two terms on the right is non-negative as shown by
(Ele;) + Ele]) - (Ely) - Ele))
(sicy) + ele]) - (BF, - Ble])

Jofe]
—
It

1

Another way of demonstrating that ¢, = E.[g] is
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IPRR

However, if the splitting stage in I-S-¥ is eliminated by changing to an I—(\If)23
sampling where (\If)23 denotes a composite stage for the two sets of variables X9 and
Xgq simultaneously, then, equation (32) applies where j— (j, k) so that

2 2 9 0
No™ = Z Fi(jk)Wi(jk)Ggi(jk) + Z Pi(jk)uiui(jk)Ei(jk)[g]'E [g] (56)

i, (]yk) i’ (]’k)

The constraints to be satisfied by the weight factors are

§ Pi_ (57
= = a)
Y4

I
§ Pigik) _ 4 (57b)
Yi(jk)

(,k)

2 T iy (57¢)
Yi(jk)

i, (j, k)

The reciprocals of the optimum weight factors for non-negative g are given by
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1. Ble] (58a)
a g
Y
E. ..\[g]
L. I(JE‘)] (58h)
- e
Yig !
mg o0
1 238k (58¢)
Vi E [“gi(jk)]
and the minimum variance for non-negative g is
”5 E2 {O- ij :I
2 gl(]k)
No“= (59)

My3

Hence, if mgyq of equation (59) is equal to mq Mg of equation (55), then the minimum
variance of an I-(¥) 923 sampling is less than or equal to the minimum variance of an
I-S-¥ sampling. (Of course, in order to attain the minimum variance in both cases,
the answer E[g| among other things must be known before sampling begins.) Note that
the optimum biasing of the I stage in the I—(III)23 sampling is adjoint biasing whereas,
in the I-S-¥ sampling, the optimum biasing of the I stage does not correspond to ad-
joint biasing.

Another point may be discussed in connection with our problem. If we consider a
(\If)1 93 sampling, then the minimum variance expression is again given by equation (59)
with mg g going over to m;gq and the optimum biasing of the importance step of the
composite (\If)123 stage corresponds to adjoint biasing, namely,

1 Bulel

[g]

o

(ijk)
Again the minimum variance attainable is not affected adversely.

It must be mentioned here that a three-variable (\I/)123 sampling yields an optimum
minimum variance that is, in general, less than a single-variable ¥ sampling (contain
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ing the same number of elements in the sample) wherein only the first variable X is
measured. For a ¥ sampling and non-negative g, the minimum variance is

Ezo

5 L

No? = - (60)
my

whereas equation (59) with my9g4 replacing myq holds for the (\If)123 sampling. Inas-

much as
Elo_ = E|o (61)
{ giJ [ giik}

as demonstrated in appendix B, our contention is readily established.

For non-negative g, it turns out that with any given number « of sampling stages,
the minimum variance with the least number of members in the sample is obtained if the
last stage is composite and all stages except the last are adjoint-biased pure importance
sampling stages. The importance step of the composite stage should be adjoint biased
and the splitting step should be biased in accordance with

m9g .
1 ) iy, - A (62)

The minimum variance for this situation is

5o, J
/\2 1112. . .lK

0% = - — (63)

mN‘
K

It is instructive to investigate the general problem of the optimum biasing of a stage
for other cases than that just presented. It is found that, in order to set up the optimum
biasing of a stage, one must know the nature of the stages following the stage in question.
The optimum biasing results for non-negative g are depicted in the accompanying
table I. The following notation is used in the table:
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= E[g’); 712 = El[gzl; Tfj = Eu[gzl; (64)
?=E [Elz[gﬂ = pEZ[g]
] (65)
2 _ 2 2
& = El[Elj[g]:I’ €5 = El][ llk[g]i|’
o =% - Egl; 512 = 612 - Eiz[g]; 6% = eizj - E?j[g]; Ce (66)
A0 = Y] - B
A0 = EA) - EZle] (67)

A0 = BRI - Efle]

where the symbol [ ] stands for any quantity. For examole, by equations (67),

2 2 2
M) = Fijleggal - Fijle)
2\ o2 2
yi (Tij) - Ei[ 1]] - Ei [g]
th

The symbol my is the magnification factor for the i~ stage. Of course, m; = 1 if the

ith stage is a pure importance sampling stage.

Equation (Bla) shows that

2 2
T = E; [Ti]] (68)
and equation (B1b) shows that
2 2
Tij = Eij I:Tijk] (69)

so that
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2 2 7 . [2 ,
Ty =By {Tijk:' = E; [Tijkl .. jl (10)

As can be seen from table I, the optimum importance sampling step of a composiie
stage is always adjoint biased. Also, in general, the optimum choice of a weight facior
for a particular stage depends on the nature of the stages following the stage under con-
sideration - in particular, on whether the stages terminate before the first pure splitting
or composite stage occurs. (Note that the results are the same for the pure splitting
stage and the splitting step of the composite stage.) The blank spaces in the tabulation
for the S or S\IJ steps indicate that the minimum variance is independent of the biasing
employed with these stages and, hence, for simplicity, uniform biasing is to be em-
ployed.

As an illustration of the use of table I, let us consider a four-variable sampling of
non-negative g which is to proceed as W¥-I-S-I. The following conditions apply in gen-

§ ' Py Pi
— = ]_’ —— = ml
u, w.
i - i

i i

Ehl
— ]

J
E:f_gz_m%

1; ]’

Pijkl _
Uikl

1 J

eral to the weight factors:

- (71)

According to table I, the optimum weight factors are given by

st

17" stage: ¥ followed by I-S. . .
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Importance step I\I,:

E;[g]
1. i}[—] (72a)
u g
Y
Splitting step S\L:
m, . (e..)
L -1t (72b)
W E[yi(elj)]
nd .
27" stage: 1 followed by S. . .
€..
| (72c)
3 Ei[ei.]
ij ]
rd )
3" stage: S followed by I
m. mg¥.. (T..0 1)
1 _ 71737k Y ijkl (724d)
" E} ... (7..
Wiik [y1]k(71]k1)]
4th stage: I (last stage)
T..
.\1 :ELMF_ (72e)
Uik ikl ik

(It may be noted that eq. (72e) arises from an "'extrapolation' of table I.) Substituting
these values into the expression for No“ yields the result

A~ 2 2
o2 = (6] . [Tigpa)] (73)
mlN m1m3N

where each of the terms on the right side is non-negative.
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OPTIMIZATION OF TdE SIZE OF THE SAMPLE AT EACH STAGE
The magnification factors my and mg may themselves be optimized. Suppose, on
the average, the total cost T of conducting the Monte Carlo analysis for the example

¥-I-S-1 just considered is given by an expression of the form

T=cgN + ch(mlN) + cS3(m1N) + cI4(m1m3N) + cg(m1m3N)

where

Cyq = average cost per sample member processed through composite stage 1
Crg = average cost per sample member processed through importance stage 2
Cgy = average cost per sample member processed through splitting stage 3
Cr4 = average cost per sam)le member processed through importance stage 4
cg = average cost per sample member of measuring g

The above equation can be written as

2 2 2
T = aN + azmlN +agm mgN (74)
where
a.2 =c
17 w1l

2 _
ag = €1 tCg3

2 _
ag=cpy +C4

In practice, Cy1 and Cgg are not constants independent of my and mg, respectively,

but in this analysis we shall assume that such dependence can be neglected without in-
A

troducing appreciable error. The problem as now set up is the minimization of 02
given by equation (73) with respect to the variables N, mlN, and m1m3N subject to the
constraint that T of equation (74) is fixed. Carrying out this minimization process re-
sults in the theoretically optimum values
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N=0
S CURIL S
a9 [r3(e5p)] +23F [ri(Tijia)] . (75)
(mfm\SN) = #_E[l/ijkiﬁl_kp]fai, -
aoF [Vi(eij)] +agE [yijk(Tijkl)]
>
and the minimum variance for given T is
T 1 E 2 .
(0 ) = ; <a2 I:yi(eij)] + a3E I:yijk(Tijkl):I> ( 6)

where the corrections to be made dependent on how the splitting processes are carried
out are not included in equation (76). Of course, since N must be a positive integer,

the theoretically optimum result N = 0 is not allowed and, in actuality, N should equal

the smallest positive integer, namely, 1. The reason that N turns out to be zero is
that the true optimum values of the weight factors are being employed. Appendix C
shows that any deviations of the weight factors from their optimum values result in an

increase in IA\T

It was remarked previously that the corrections dependent on how the splitting
process is effected are not considered in equation (76). As an example of how such cor-
rections may be included, we turn again to the three-stage sampling I-S-¥ considered
oreviously. The minimum value of the variance is given by equation (55) as

2
E%o
5 A [giij
o = + - (55a)
N m2m3N

where the notation of equations (65) and (67) had been incorporated in equation (55a).
Here we also wish to obtain optimum values of N, myN, and m2m3N subject to the con-
straint that the quantity

2 2 2
T = by N+ bymoN + b3m2m3N (7N

It is realized that equation (51), from which we obtain equation (55a), does not include
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the additional variance terms (such as those given in eq. (41)) for the S and ¥ stages.
Consequently, equation (55a) cannot represent a true minimum. Let us first consider
the S stage. It is assumed that the added terms, that is, the second summation of

equation (41), constitute only a small perturbation. If this is so, then equations (53a),
P

(53b), and (53c) and the result that 02 is independent of the form of W, and, hence,

on the form of s;; can be considered as approximately correct. For simplicity, we can
take Sij to be a constant independent of i and j where, by equations (52a) and (52b),
this constant must be 1/m2. If Kahn's procedure is followed, then m, is either a
positive integer (corresponding to a type I region) or m,, is a fraction less than 1 (cor-
responding to a type II region). In the first instance, m, is a positive integer and all

rij are zero so that the added terms of equation (41) vanish and equation (55a) is exact.
P P

Now, since 02 is independent of (mZN), if the process of minimization of 02 were
mechanically carried out, the optimum value of (mzN) would be zero. But, because m,
is restricted to the positive integers, the lowest value for my that can be chosen is
unity and the splitting stage S is reduced to a unit stage U where Sij = 1. In the sec-

ond instance, m, is a fraction less than 1 and equation (51) must be modified to include

the appropriate Eer ms of equation (41). Minimization of the variance with such terms
included show that the optimum value of m, for this case is unity. Thus, it has been
proved that, to obtain the minimum variance, the splitting stage becomes a unit stage
whereby the three-stage sampling process goes over to I-U-¥ where equation (55a) is

now

o= - L4y = (78)
N m3N
Equation (77) becomes
(.2 .2 2
T —<b1 + b2>N + b3m3N (79)

(It should be remarked that this result holds in general; that is, when the variance
of the sampling process does not depend on the form of the splitting factor for a particu-
lar S stage or for the splitting step of a composite stage (blank spaces in table I), in

order to obtain minimum variance, the splitting factor goes to unity.) Minimization of
P

02 of equation (78) with respect to N and mgN subject to T of equation (79) being

fixed yields
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‘\
- T)/(e )/\/:+b2
N = : [
‘/b b boE
"2 by L& uk]

TE
A\ [Ogijlj/ ’3

(mgN) = ——— —— =" — .

2 .2
my(e.) + boE |o }
1 277 3 [gijk P

(80)

Y

and

2

~N -
2 1 2 2
v == \Ib +bs y(.) + boE |0 (81)
T 1 274 3 [giij

It must be remarked that the additional variance due to the splitting step of the ¥ stage
which is equal to

2
> Pk ik Sijic T - T35 Byl 8]
i,k

has not been incorporated into equation (81) and the optimum values of rijk may have to

be readjusted to keep the additional variance small.

REMOVAL OF NON-NEGATIVE RESTRIC TION

Heretofore we have limited g to non-negative values. The hypothesis that g be
non-negative meant that all expectation values of g are necessarily non-negative and
permitted us to express the weight factors, which must themselves be non-negative
quantities, in terms of these expectation values. Table I holds only for the case where g
is non-negative.

If g can take on negative as well as positive values, then equations such as (36a)
and (36b) cannot, in general, be written. To demonstrate the changes in the relations,
let us treat the same problem (a W-¥ .sampling) which led to equations (36a) and (36b)
but now no longer regard g as being restricted to non negative values. Equations (32),
(34), and (35) still apply and the optimum values of ul, Ai, aij’ and {;Vij are given by
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where @, denotes the absolute value of Ei[g] and aij the absolute value of E,

that is,

Note that

R
i

so that

Similarly,

= S by Byl | = Eiley)

‘Ei[g]\ = I > pyEslel
i
a, = Ei[aij] = g

= Byl = Byl %]

(82a)

(82b)

(82¢)

(82d)

(83)

(84)

(85a)

(85D)

The minimum value of NcgZ is found by substituting equations (82) into equation (32a):
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2
Pl e

N - R (86)

Table II is a listing of the optimum values of the reciprocal weight factors when g
can take on negative as well as positive values.

A SIMPLE EXAMPLE

We take a simple example to illustrate the concepts. We suppose the situation as
shown in sketch (d). There are two stages of sampling, the parameters being given in

ppp=0.90 — Eplgl=0, 09y, 100
Py 0.3—>< 12 =0.02 —a E12[9] = 100, 0912= 50
=0.08 —» - :
P13 Eppla) =6 og =2

Pp= 0.0 —=Epl9)-10, og -2
Py = 0. F—= P27 050 = Eppla) = 60. o4, 10
P3=0.30 — = Epng]=-0, 04y 0

(d)

the sketch. The formula for the variance for the two-stage sampling is given as equa-
tion (32a) to which must be added equation (41) to take into account the added variance

introduced by the splitting processes.
The variance resulting from straightforward sampling (U-U) for this example is

2

2 2
Noyy = E [Ti]] - E7[g] = 3605 (87)

N
We shall determine the minimum variance 02 for each of the following four cases:
(1) U-w, (2) I-I, (3) Ww-1, and (4) ¥-¥. The magnification factor of any splitting stage or
ste) will be set close to unity.
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Case (1) U-¥
Equation (32a) becomes
2 _ 2 2 2
Noy g = E pijwijogij + E /a'ijuijEij[g] - E7[g]
i,] i,]
From table I, the optimum choices of the weight factors are

meao
278y

—— - _1_—
b
u.. Ei[g] ;V Elo
1] gij

Substituting these values into equation (88) results in

ij
= .. +2=_1_1§_.2_+1

) my

83

where a correction based on the splitting step is still to be added.

For m, = 1, the reduction in variance over that of the straightforward sampling

situation can be written as

PN A\

2 2 [:1 2 2
Ni{o -0 E(r..| - ET |o - €

Uuu Uw m2:1 ij [gij:,

2

- <Ogii ' E[Ogi:iD

1673 + 616 = 2289

Calculating the optimum weight factors for m, = 1 from equations (89) and the

relation

+E [(Eij[g] - Ei[g]>2:|

(88)

(89)

(90)
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1
sij
uij
gives
i j 1/&1] 1 /%ij 1/sy;
1 1 ot 2.97 o~
2 40. 32 1. 485 0.0368
3 2.42 0. 0594 0.0245
2 1 0.3126 0. 594 1. 90
2 1.875 0. 294 0. 157
3 0 0  ------

Following Kahn's procedure as described previously, we take 1/s11 and 1/s21 to be
integers. In particular, 1/s21 is taken as 2. This changes the numbers for i=2 and
j=1 from those given previously to

1, 1 1 1 _ 4 6952

H

S91 W91 S21

[

21

and increases mgy to slightly more than unity. Substituting the altered values for weight
factors into equation (88) yields the new values of NGIZI‘I/ as 1310. To this figure must
be added the increase in variance due to the Russian roulette process as given by equa-
tion (41):

2, _ 2
aNo®) = PijWySiTy (1 - rip)Eyjle]
i,j

2 2 9
= Pygwyg(l - r19)Eglg] + Pyawyg(l - ryg)E 5[8] + PogWoq(l - ry9)E5q[g]

38.8 + 14. 2 + 3610 = 3663
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Hence, the total variance using almost optimum weight factors is

No%\l, - 1310 + 3663 = 4973
my=1. 004

which is a figure that is larger than that obtained with straightforward sampling. This
large value is due to the Russian roulette process practiced on the i=2, j=2 branch which
results in the addition of 3610 to No2. The reason the term pyoPgoWoq(1 - rzz)Egz[g]

is much larger than the other terms in A(Noz) is that the product pipi].Eizj[g] is much

larger for the i=2, j=2 branch than for the other two branches in which Russian roulette
is used.

In order to eliminate this large value of A(Noz), 1/s22 is taken as equal to 1 giving
rise to the new values

S T S e LG

S w s -
22 22 22 Ugy Ugg

and thereby raising the value of m, to 1.551. Now the total variance becomes

2

Uw my=1. 551

No = 1263

where the contribution to this figure by the Russian roulette process in the splitting step
is only about 50 in magnitude.

Case (2) I-I

Equation (32a) becomes

2 _ 2 2
Nof = D ey - E-le] (91)
L]
By table I, for this case,

E.[T:.] T,

1 1 i

T = ﬁ]_‘ 1] ; :__ = J (92)

u E[Ti]] u Ei[Tij]
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and
/5 2 2
NoH =E ['rij] - E%[g] = 2194

Here the reduction in variance is

N<0%U - ;EH> - E [Tﬂ ) EZ[Tij] - E [(Tij - E[Ti]-]>2] - 1411

and the optimum weight factors as given by equations (92) are

i i l/ui l/ui:.|
1 1 1. 775 1.078
2 1. 206
3 0. 0682
2 1 0. 668 0. 640
2 1. 744
3 0

Case (3) ¥-I

By equation (32a)

z’au iY%j 1] Z PWEl[g] Z Plllz[]’Ez[g]

and by table I

Substituting equations (95) into equation (94) results in

20

(93)

(94)



Nog1= - —— = —— (96)

where the correction based on the splitting step of the composite stage is not yet incor-
porated.
For my = 1,

1l

E[(Ti]. : Ei[Ti].]> 2} VE [(Vi”ij) _ E[yi(vij]ﬂ +E [<Ei[g] ; E[g])z:l

=708 + 1304 + 183 = 2195

The increase in variance due to the splitting step in the ¥ stage must be evaluated.
We get, for m, =1,

1
i 1/ui 1/wi 1/si
1 0. 1071 2. 47 23. 04
2 1. 383 0. 37 0. 2675

Again, if Kahn's procedure is followed, then 1/s1 should be taken as 23 whereas l/s2
is left at the value 0. 2675. Applying equation (41), we find

2 2 2
A(No*) = Z oWty (1 - T)EL(g] = pgwy(l - T)Ej[g] = 1419
1

N\

This value, if left unchanged, would more than double the original value No\zm. Hence,
we take (1/32) = 1, which eliminates Russian roulette entirely. Our altered values are
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A~

i j 10, 1 /54 1/w, 1/0;4
1 1 0.1071 23 2.463 1. 078
2 1. 206
3 0.0682
2 1 1. 383 1 1.383 0. 640
2 1. 744
3 0

The value of m, has been raised to 1.707, and the total variance becomes

2

No 9l

_ 2
m=1.707 2. Py
1

_0.3x8595 , 0.7x193.1 _ 1547 . 98 = 1145

2.463 1. 383

The equations are
No‘2 = D.D: W o2 4 p.p:.W.u .Ez[g]
U iY1) 7] gij Z PR A A N I &
L] i,j

2

_ Z plleiz[g] + 2 plulElz[g] - E [g] (97)
i i

where, by table I,
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and the variance of the sampling process does not depend on the form of the splitting

2
/\2 E |:ogij:|
NoS .= -~ = (99)
mymy

factor S5 We get

As mentioned previously, for optimum results, the splitting step of the first composite
stage is eliminated so that

Loy, i=1,2 (100)
S
and m, is 1. Thus, ¥-¥ goes over to I-¥ and equation (99) now becomes
2

"3 " ’ [Ugij 1133
Nog,q = Nojy, = - = - (101)

2 2

For m, =1,
A ~
2 2 _ 2 2 2
Nloguy - %19 B _E[T”:I_E [g] - E T }
mz—l | °1j

.
’ an ) E[UgijD ' EKEiJ'[g] ] E[g]ﬂ

11

1673 + 799 = 2472

and
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S
11]..11_‘.lj Wij Sij

11 o* 2. 97 o0
2 4. 32 1.485  0.3435

3 0.2593 0. 0594 0.229
2 1 0. 432 0. 594 1. 372
2 2. 993 0. 297 0. 1145

3 0 0 0

Again, by Kahn's procedure, we take l/s21 equal to unity. In addition, to avoid
an unduly large variance due to the splitting method, 1 /s22 is also set equal to unity.
Hence, 1/w21 =0.432 and 1/w22 = 2. 593 and these values correspond to a value for
mo of 1.781.

The formula for total variance now becomes

2 2
my=1.781 Pi¥i%g, * ) Pttt iy By le)

L] Lj

2

NGI o

= 1063 + 38 = 1101

SUMMARY AND CONCLUDING REMARKS

General formulas have been developed for the variance reduction obtained under
different sampling schemes for the situation where the two techniques of importance
sampling and splitting and Russian roulette are employed. Optimum biasing proce-
dures have been determined for any number of independent random variables and the
results are shown in tables I and II.

It is found that, when the random variable under consideration is non-negative, the
minimum variance with the least number of members in the sample is obtained if the last
random variable is sampled in a combination importance-splitting sampling manner and
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all preceding variables are sampled employing adjoint biasing. A short example has

illustrated the possible increase in variance that may occur if indiscriminate Russian
roulette practices are used.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, September 22, 1970,
129-01.
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APPENDIX A

A SPLITTING TECHNIQUE

n.
We are to consider the splitting method in which, for each of the original {nl}
ij
I.+1
members, Il +1 members are generated, the last member having a weight equal to
ij

T. I.
{rl} that of the first {Il} members. Thus, an effective splitting factor equal to
ij ij

—1—:1.+r.
i i

is obtained.

= Iij +ri].

.

0

i
The random variable to be considered is that given in equations (44) and (45) of the

Y= Z v, (44)
ij

text and repeated here:

where
Y11 Vgl
W
YI] N (g]-])all * rl (g1]>0’21
@yq=1 @g1=1
“igdg NP
N 3 T N 45
1 § , (gu)alz T ity E (813) rgg (49)
@y9=1 ¥99=

The mechanics of carrying out the sampling procedure are as follows., A sample of
size N is first picked from the xl—population in accordance with the probability distri-
bution function pi/ui and n, designates the number of members possessing the ith
value set of Xy These n; members generate Vil = Iini members, each having an

associated weight of Wi, and Vig =1y members, each having a weight of wirs. The
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sample members are further subdivided in accordance with their xz—values where the
probability distribution function is p; /u Thus, of the members possessing the 1th

value set of Xy and the j th value set of Xg, there are n, i members with a weight of
1
Wiy where E nilj = Vil and nizj members with a weight of Wi, where

i
E n, i T Vi Finally, each of these members in turn is split into (Ii +1) members
2 2 j

i
where the last member has a weight r1] that of the others. Hence, for each i and j,

there are four groups: (1) vy 1j1 Il]nllj members with weight wu, (2) V12]1 = Iijnizj
members with weight w..r., (3) v _n. . members with weight w, Ty i’ and (4) Vi

iji idg =14l iji Lolg
= nizj members with weight w1]r1r1]

We wish to determine the variance of Y. Proceeding as in equation (28), we have

2 92 9
Y~ Z E [Yij] + E [YUYIJ } E E [YIJYI ]J - E7[g] (A1)
i,] i, i,j, 1,7

G#") (iA")

The terms of the first summation on the right side of this summation may be written as

E[YZ‘ =gl + 1.V +T..V +r ?
ij 9 iljl(gij>11 i izjl(gij)m ij ilj2<g1j> 12 irijyizj2<gij>22

(A2)

There are ten terms to be evaluated, four squared terms and six cross products, and
each can be handled by the methods employed previously. For example,

2
a

2 T2 2 Sij | .2
E(v: . (g.. = . + E..[g]
[11]1( 1]>ll:| 11]1 V. . ij

|
=
<

2 2 2
o Elv, . +E..[g]E[u. . }
&ij [ 1131} 1 11

2 . Pi_ Py 2. 2 [2
N =I. =1. + E_.[gll.. En, .
TR B VR L il
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and
- .. =2r..E .V,
l}ruvlﬂl( )11V1112<g13>12:| Tij ll[g]E[ 1J1V1112:|

_ 2
= 2r1J 1][g]I El: 1j:,

where

2 2
E[n.z}: e R | PR B %R T NPee e 1 Pt
14 u2 u, u u2 W U
i ij L ]

Evaluating each of the terms entering into equation (A2), we find that
2] 2 1 2
E{Yi]] - E[ 32 ijJ < PP {1 - [1 - s;r(1 - ri)] [1 - yry(L - 1])]}

I{Ip pl]wlsl ij {1 - r r, (1 -r. )E2[ ] (A3)

ij

where the expression for E[f 12]:, is given in equation (29). Continuing with the computa-

tions, we find that, for j#j’,

) )
E[Yijiij'_l NZ E Vilj1<gij> 1t riui2j1<gij 91 t rijyiljz(gi]'>12 + rlruvlzlz(g )22

—_— —

' <Vi1ji (Biy) 11+ i1, (gij'> 21 " ity (gij'> 12 * Tify V12j2< i) 22>

{51] 51]} S PiPyjPyr¥siFi (1 - r)Ey;lelE; (el (A4)

and, for i#',
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5[ Yy¥is] = B[ 2y Sy (49)

where the expres.sions for E [(;ij 5ij':| and E [511. 5i‘j':| are given in equations (30)
and (31), respectively.
Substituting equations (A3), (A4), and (A5) into equation (A1) results in

2 5.2 E : 2
NO‘Y = Nod? - pipijwijogi]- {1 - [1 - Siri(l - ri)] [1 - Sijrij(l - ri].)]}

1,]
p;: 2
- piwisiri(l - ri) 1 <uijEij[g] - Ei[g]> (47
Z. . i
1,]

Similarly, it can be shown that, for the splitting method considered in this appendix,
if there were only one sampling stage, then the change in variance would be given by

A(Naz) = - piwioésiri(l - ri) (A6)
: / i
i

and, if there were three stages of sampling, then

2, z ‘ 2
A(No ™) = - pipijpijkwijkogijk{l - [1 - Siri(l - ri)] [1 - sijrij(l - ri].)] [1 - Sijkrijk( 1- rijk)]}

i,j,k
Piik 2
- PiPyjWi3SiyTij( 1 - Ty <uijkEijk[g] - Eij[g]>
L ijk
i,j,k
Pij ?
- pyw;s;Ti(1 - 1) - <uijEij[g] - Ei[g]> (AT)
— ij
i,j

The formula for any arbitrary number of stages should now be readily apparent.
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APPENDIX B

PROOF OF INEQUALITY

We wish to show that

We can write

E [agi] = E[ogijk:’ (61)

2
2 _ §
Ugi h <gijk1 1[g]> P;iPijk
ik 1,. ..
2
= [(gljkl Elj[go + <E1][g] - Ei[gJ >J pl]pljk
]’k’ 1’

and similarly

Hence,

60

9 2
Egij + <E1][g] - Ei[g]> J (Bla)

2 2 2
g, = Eij [Ugijk + <Eijk[g] - En‘[%]) :’ (B1b)



E[agi} “ELYE E’ gij * (Eii[g] - Ei[g]ﬂ

C o ]
-e|VE, Egijk + (Eijk[g] - Eij[g]>2 . <E1][ | - E, [glﬂ

1/2
el (E. |62 (B2)
b8k

v

In addition, we have the relation

E.lo - Eflo =E.||o - E. =0
1[ Eijk 1 Bijk M\ 8ijk [ Eijk

which can alternatively be shown by proceeding as follows:

2
2 2 E ‘ .2 E

E.|o - Ef|o P3P P;:D.

1[ gijk] 1 [gijk] ik g 1Pk g

ik ik
P;iP; o2 P;.oP
1]k 8ijk ij' i’k
ik i k'
o Pii Pisrr T
E , PiPurPuRPie Tggn Tegin
Ik 3K
0 o TR o JURREN 02 -g o
PiiPu PP | Tegn T Teie T8
ik 3K
1 2
== Pi:irPs i1 Pssrir |O -g =0
9 1] 1) pl]kpll k gi]'k gij'k’
LKL K
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Thus,

e
[ B
Q
g N
R
K
v

> Ei o (B3)
8ijk
Substituting inequality (B3) into inequality (B2) yields

E > E(E, = Elo (B4)
[Ogj ‘{Ggijk} [ gijk]

and inequality (61) has been proved. It may be remarked that inequality (61) merely
demonstrates the obvious fact that measurement of an additional two correlated variable
sets in general reduces the expected standard deviation,
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APPENDIX C

VARIANCE RELATION FOR NONOPTIMUM SAMPLING

In this appendix, we will determine, for a W-I-S-I sampling, the optimum values
of N, mlN, and mlmSN that minimize the variance subject to the constraint given by

equation (74). It will be assumed that the weight factors u;, Wy, Uj4s Wijk’ and ul]kl
are not at the optimum values as given by equations (72).
Using equation (49b) where « =4 and the relations
Wiy = Y%
Uik = 1 (C1)

Yijkl T Yijk1Vijk

that hold for a ¥-I-S-I sampling, we obtain

2 _ 2 :
No™ = ) Z ’al]kl 1]k ijkl 1]k1 Z pl]k 1]1{ 1]k pl]kwlul]El]k[ gl

I’J’k’l 1]7k

Zplllg] ZPUE lg] - [] (C2)

We can write each of the weight factors as a sum of its optimum value and its deviation
from optimum

u. = u, + Au, h
i i i
.= W, + Aw,
Wi =Wy Wi

u..=a..+Au.. }

ij ij ij (C3)

Wik = Vijk * AVijk

Yiikl T Ykl t AY%ik

63



where the optimum values are given in equations (72). Substituting equations (C3) into

equation (C2) gives

2 ~ - 2
No™ = g 2ijkl ':(Wijk * A""ijk> A+ Yk AWile Tijkl

ij,k,1
- Z Pijk(AWijk)Eizjk[g] + Z pl]k l:<w1 + Aw. >Au] + u] Awi|E12]k[g]
i,k i3,k
2|}/ (€ )} Ez[ 1]k( 131{1)]
ZF’ (AW )E [g Z P (Au )E [g] + ——— - +_______ (C4)
| myms

N

The sum of the last two terms on the right side of equation (C4) is No2 (see eq. (73))

and, hence, in the event that all deviations from optimum go to zero, No® reduces to
N

Ncr2 as it should. N
We would like to show that N02 is the smallest value that can be obtained for N02

by establishing that the sum of the terms on the right side other than the last two terms
is larger than or equal to zero. In order to accomplish this, let us define A BY,

and C2 by

2 - 2 2
A= Z ? ijk1<“’ijk AUk *+ Ykl Awijk>Tijk1' E Pk AWig) Bjelel - (CH)

i}j’k’l i}j,k
B2 = P <w Au +G Aw E2 [g] - 2.(Aw )E2 (C6)
B ijk ij ij ijk g i i i[g]
L,j,k i
2 2
c”= Zﬂi(Aui)Ei [g] (C7)
i
so that
2
{ (3 )] E [’y.. (7,. )]
1] ijk‘ ijkl

NoZ=a2 B2 12, 1, - e (C8)

m1 m,ms
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With the use of the constraining conditions on the weight factors as given by equa-
tions (71), it can be shown that each of the quantities Az, Bz, and C2 is larger than or
equal to zero.

Let us treat the quantity C2 in detail to illustrate the procedure. By equations (71),

uy satisfies the equation

i

(C9)

C-‘l"c

and, consequently,

pl
1 (C10)
l.l

Equation (C9) can be written

p.| L +A<l> -1 (C11)
il .
u.
u. i
i
i
where
Au,
A(}_> = l - l. = - 1 (C12)
u. u, -
i iy u,uy

Pj

~— Au; =0 (C13)
u.u.

11

which is the constraining condition that (Au.l) must satisfy. Now equation (C7) can be

expressed as
p; Au.
c?- g\ (C14)
Yi

i
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where equation (72a) has been employed. We are now in the position where we can mod-
ify equation (C14) by using equation (C13) to yield

2 _ g2 Py Ay VP AY
w2 au
- Y : ii
1 1

P. 2 P; o 9
- E°[g] 5 oy :E L 5{g] (dwy (C15)
uiui - 1

2

= (.
Treating the quantities A2 and B2 in like manner, we have

2 ) ~ 2 2
A= § 21k 13 A k) i * E 2ijk(AWijp) §pijk1“ijk17ijk1 - Ejjlel

1L,k 1 i,j,k 1

Equation (C15) is the desired relation that shows C
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2k A5 1k (i)

1]k[ 11k1]
2 ijr1V 1]k( u1]kl) * E

uijkl ij,k
i,j,k,1

1]k1 1]k1
E 2 ijkVijk 1]k Tiikl % Alj5p7) E (A5
i,k 1;|k1 1]kl ijkl
Ez
1]k 1]k1 (Aw. .. )
SR S 1]k /al]k
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”k uk ijk
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_ Pijkl 2 2 2ijk_2 2
= — = Wik Clipa) 7 ik (Tigi) AWi51) (C16)
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and
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We see that minimization of the variance as given by equation (C8) with respect to
the variables N, mN, and m1m3N subject to the constraint expressed by equation (74)
no longer yields zero as the optimum value of N but instead gives

67



1/2
- T<A2 + B2 + C2> Al
N=— .\ I - (C18a)

>1/2

2 2

a,\A“ + B +C2

1 * azE[Yi(€ij)] +agk [”ijk('rijkl)]

The optimum values of mlN and m1m3N become

e ey /a2

(Ap)=— = e e e (e

2 2 2 -
a1<A +B”+C > + aZE[yi(ei].)] + aBE[yijk(Tijkl)]

< A > TE [”ijk”ijkl’]
m myN} = — — - - — e (C18c)
a<A2+B2+C2> +agEyv.(e.)] +aEly... (T..,4)
1 2 i‘Tij 3 ijk' ijkl
and the minimum variance is
2
1/2
2 1 2 2 2
<0 )min T 24 <A +B” +C > +agE [yi(eij):l +agE [yijk(Tijkl)] (C19)
2 7N 2
It is to be noted that (o > . Z( o” Jbecause <o > . is not minimized with respect to
min min

the weight factors. To be redundant, if the weight factors take on their optimum values,

2 2 2 2 (7R
then A" + B +C" =0 and(o >min‘<o/\>'
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APPENDIX D

SYMBOLS

quantity defined by eq. (C5)

coefficients appearing in eq. (74)

quantity defined by eq. (C6)

coefficients appearing in eq. (77)

quantity defined by eq. (C7)

coefficients defined immediately before eq. (74)

expectation value of ]

expectation value of |:] given that O is fixed at a
certain value

expectation value of [ ] given that X4 takes on its ith
value set

expectation value of [:l given that x1 and Xg take on

their it" and jth value set, respectively
probability density function of [ ]

probability density function of [] given that O is fixed
at a certain value

function dependent on a number of sets of random variables

integral portion of the reciprocal of 85, 8; re-

IR
spectively

pure importance sampling stage
importance sampling step in a composite sampling stage

quantity employed when using the Langrangian- multiplier
technique of minimization subject to constraints

magnification factor for ith stage
original number of members in sample

number of sets of variables upon which g is dependent
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th

n number of members in sample possessing i~ value set of

X4 immediately after importance sampling on x l—variable

ni]. number of members in sample possessing ith value set of
Xy and jth value set of Xg, immediately after impor-
tance sampling on xz—variable

Py, 24 probability that x, takes onits i value set

pij conditional probability that Xq takes on its jth value set
given that Xy has taken on its ith value set

ik conditional probability that x5 takes onits k' value set
given that X4 and X, have taken on their ith and jth
value sets, respectively

2 probability that x, and x, take on their i and j®
value sets, respectively

21 probability that x,, x,, and x, take on their i, j*,

1 th

and k™ value sets, respectively

s ij? fractional portion of reciprocal of si’sij" . ., re-
spectively

S pure splitting sampling stage

S\p splitting step of a composite sampling stage

s(xl,xz,. ..) splitting factor dependent on variable sets x;,X,,. . .

S; splitting factor for x,-stage of sampling

ij splitting factor for xz—stage of sampling

T constraining quantity defined by eq. (74)

s binomial variable occurring in analysis of Russian roulette

U unit sampling stage

u(xl, Xgyo v ) " importance sampling weight factor dependent on variable
sets X1,Xg, . - -

uy importance sampling weight factor for xl—stage of
sampling

ui]. importance sampling weight factor for xz—stage of
sampling

W(xl’XZ’ cel) overall weight factor dependent on variable sets
X13Xgye -
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w. overall weight factor for x. -stage of sampling

1
overall weight factor for Xq- and xz—stages of sampling

i
X ] collection of sets of random variables upon which g is
dependent
Xy ith set of random variables
Y random variable defined by eq. (44)
Yij random variable defined by eq. (45)
Z random variable defined by eq. (16)
Zij random variable defined by eq. (17)
U? random variable defined by eq. (24)
/)Oij random variable defined by eq. (25)
oy absolute value of E,[g]
aij absolute value of Eij[g]
Yz(l—__])n’iz(l:]),yizj([:]),. . . quantities defined by eqs. (67)
A(D change in [ ]
52,53,5%,. . quantities defined by eqgs. (66)
2, e?, 612]., . quantities defined by eqgs. (54) and (65)
K number of stages
}\2 Lagrangian multiplier
v number of members in sample immediately after splitting
02 variance
0[2j variance of I:l
oé/xl,x2 variance of g when Xy and Xy are fixed at certain values
<02> min minimum variance appearing in appendix C
T2, Tf‘, Tizj, . quantities defined by eqs. (64)
W composite sampling stage
\I/23 composite sampling stage for variable sets Xy and Xg

simultaneously



D, Q any quantity

Subscripts :

i Xy fixed at its ith value set

j Xy fixed at its jth value set

k Xg fixed at its kth value set

a,p dummy indices

Superscripts:

' (orime) differentiates from unorimed quantity
- optimum value
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